Umm... just saying that this might resolve a bit differently than usual. But its written down elsewhere...
Check the game here: https://lichess.org/GF9YULQP.
The game so far: 1. e4 e5 2. Bc4 Nf6 3. Nc3 Nc6 4. Nf3 Nxe4 5. Nxe4 d5 6. Bd3 dxe4 7. Rg1 Bf5 8. Bb5 exf3 9. Bxc6+ bxc6 10. Qxf3 Qd7 11. Qc3 f6 12. g4 Bxg4 13. Rxg4 h5 14. Re4 Qd5 15. Qf3 Rd8 16. d3 a6 17. b3 Qc5 18. Kd1 a5 19. Bb2 g6 20. Qxf6 Kd7 21. Rxe5 Qd6 22. Qxh8 Be7 23. Qg7 Rf8 24. Rxe7+ Qxe7 25. Qxe7+ Kxe7 26. Ba3+ Kf7 27. Bxf8 Kxf828. Kd2 Kf7 29. Re1 Kg7 30. Re7+ Kf6 31. Rxc7 h4 32. a4 g5 33. b4 Ke6 34. bxa5 Kd6 35. Rb7 Ke6 36. a6 Kd5 37. h3 Kc5 38. a7 g4 39. a8=Q Kd6 40. Qe8 g3 41. f4 Kd5
The other candidate move is 42. Qe6+
The conditional market for the other move is here:
Here is a table of the correspondence to market value and score
value score
----- -----
0.00 0.000
0.03 0.246
0.07 0.574
0.10 0.820
0.20 0.840
0.30 0.860
0.40 0.880
0.50 0.900
0.60 0.920
0.70 0.940
0.80 0.960
0.90 0.980
0.93 0.986
0.97 0.994
1.00 1.000
----- -----
This correspondence is defined by linearly interpolating between the points
(0.0, 0.0), (0.1, 0.82), (0.9, 0.98), (1.0).
Note that when the game ends, the score will be 1.0 - #moves x 0.0004 if white wins, 0.5 - #moves x 0.0002 if its a draw, or 0.0 if we lose.
Some More details for the overall game here:
https://manifold.markets/harfe/will-white-win-in-manifold-plays-ch
42. Qe5++: Average market value: 0.920000
42. Qe5++: score: 0.984000
42. Qe6+: Average market value: 0.709144
42. Qe6+: score: 0.941829
Winner: 42. Qe5++
--------------------
resolution of market 41. f4:
resolution score: 0.984000
corresponding market value: 0.920000
probabilistically rounded: 92%
Here is a table of the correspondence to market value and score
value score
----- -----
…
0.90 0.980
0.93 0.986
…
Interpolate linearly
Uh, why such a far out close? I’d say advance it at least 11h. 🕚