Will a single manifold market beat the FiveThirtyEight World Cup Predictions for which teams make it to the round of 16?
resolved Dec 2

This market resolves YES if the Brier score for the predictions of the manifold market below is lower (lower is better) than that for the FiveThirtyEight 2022 World Cup Predictions: https://projects.fivethirtyeight.com/2022-world-cup-predictions/

I will compare the predictions before the start of the World Cup (November 20).

By the nature of the manifold market (multiple choice with 16 answers resolved with equal percentage) I will multiply all probabilities in the market by 16. I will assume that any probability larger than 6.25% percent in the manifold market is equal to 1.

Since I will be calculating the scores, I won't bet on the market after I gather the data (November 20). The market resolves at the end of the group stage when all teams for the Round of 16 are determined.

Brier score: https://en.wikipedia.org/wiki/Brier_score

Manifold market to compare:

Get Ṁ200 play money

🏅 Top traders

#NameTotal profit
Sort by:
predicted NO

They were way closer than I expected:

Brier fivethirtyeight: 0.201

Brier manifold market: 0.206

in fact the manifold market would have won if South Korea didn't get that last minute classification

predicted NO

if you want to check:

outcomes = {"Qatar":0,






"United States":1,



"Saudi Arabia":0,








"Costa Rica":0,














"South Korea":1}

print("Brier fivethirtyeight:", sum([(fivethirtyeight[country] - outcome)**2 for country, outcome in outcomes.items()])/32)

print("Brier manifold market:", sum([(mm_[country] - outcome)**2 for country, outcome in outcomes.items()])/32)

predicted NO

Just downloaded the data. These are the probabilities that I will be using:

mm = {'England': 1,

'Argentina': 1,

'Brazil': 1,

'Spain': 0.9451968360534888,

'France': 0.8974907339737943,

'Portugal': 0.849977244235089,

'Germany': 0.8112415168267147,

'Netherlands': 0.7971968295073112,

'Belgium': 0.7595755431348061,

'Senegal': 0.7426855519809036,

'Croatia': 0.741065876527692,

'Denmark': 0.6719708710471769,

'Uruguay': 0.617516701467408,

'Switzerland': 0.49974494455889923,

'Mexico': 0.49965919586782787,

'Poland': 0.4608358796614559,

'United States': 0.45698850032681404,

'Ecuador': 0.4202289531028565,

'Wales': 0.36538907075213484,

'Serbia': 0.3057351303302865,

'Morocco': 0.27690844073942406,

'Canada': 0.20328431337571382,

'Australia': 0.18374603476500043,

'Cameroon': 0.15410561203952933,

'South Korea': 0.14789233306591248,

'Iran': 0.09774239358780965,

'Ghana': 0.09141480094632379,

'Japan': 0.08992401674617002,

'Tunisia': 0.08298078235641886,

'Saudi Arabia': 0.06596123866028777,

'Qatar': 0.028929836130672053,

'Costa Rica': 0.02812887522247895}

fivethirtyeight = {'Brazil': 0.91045,

'Spain': 0.80686,

'France': 0.82686,

'Argentina': 0.83995,

'Portugal': 0.81087,

'Germany': 0.76424,

'England': 0.80426,

'Netherlands': 0.79006,

'Denmark': 0.64835,

'Uruguay': 0.65274,

'Belgium': 0.624,

'Croatia': 0.54419,

'Switzerland': 0.47861,

'United States': 0.52953,

'Mexico': 0.53636,

'Senegal': 0.51129,

'Ecuador': 0.48209,

'Morocco': 0.46473,

'Serbia': 0.41295,

'Japan': 0.34492,

'Canada': 0.36708,

'Poland': 0.3792,

'South Korea': 0.35636,

'Tunisia': 0.30862,

'Iran': 0.34207,

'Wales': 0.32414,

'Cameroon': 0.19799,

'Saudi Arabia': 0.24449,

'Australia': 0.21617,

'Qatar': 0.21656,

'Ghana': 0.18003,

'Costa Rica': 0.08398}

predicted NO

@egroj Nicer format for comparison (but rounded):